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Abstract

Global error estimation processes applied to the first order system
of non–stiff initial value ordinary differential equations are described.
New methods are developed based on existing Runge-Kutta triples and
new special estimator formulae to yield both discrete and continuous
global error estimation. Such methods can be seen to be equivalent
to a more efficient estimation procedure based on global extrapolation
and global embedding.

1 Introduction

In previous work ([4], [9], [10], [5]) the solution of an associated problem has
been used to provide global error estimation with explicit Runge-Kutta (RK)
processes. This paper reviews and further clarifies this work, extending it
to provide continuous global error estimation when dense output is employed.

The first order system of initial value ordinary differential equations

y′(x) = f [x,y(x)], y(x0) known, (1)

is considered. This system may be solved using a Runge-Kutta triple [8],
denoted by RKTq(p)q∗, of the form:
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ŷn+1 = ŷn + hn
s∑
i=1

b̂if i,

yn+1 = ŷn + hn
s∑
i=1

bif i, (2)

y∗n+σ = ŷn + σhn
s∗∑
i=1

b∗i (σ)f i,

where f i = f [xn + cihn, ŷn + hn
i−1∑
j=1

aijf j], i = 1, 2, . . . , s∗, and in which

xn+1 = xn + hn, hn = θ(xn)h, 0 ≤ θ(xn) ≤ 1, ŷ0 = y(x0), xn+σ = xn + σhn,
the discrete embedded pair are of orders q and p (q > p), the dense formula
is of order q∗ and it is assumed that f s∗ is the FSAL (First Same As Last)
evaluation so that y∗n+σ is C1 on [xn, xn+1]. Local extrapolation, in which
the integration is propagated from the higher order approximation ŷn to the
true solution y(xn), is the preferred mode of operation [6] and is therefore
assumed. Thus the lower order discrete process is only used to control the
step size. The FSAL assumption requires

cs = 1, b̂s = 0, as,j = b̂j, j = 1, 2, ..., s− 1.

Under appropriate conditions, the local truncation error t̂n+1 , at x = xn+1,
of the RKq process may be written [3]

t̂n+1 =
∞∑

i=q+1

hin

ni∑
j=1

τ̂
(i)
j F

(i)
j [xn,y(xn)],

where the F
(i)
j are the elementary differentials of f , the τ̂

(i)
j are the truncation

error coefficients, which are dependent on the RK parameters ci, aij and b̂i,
and the global error at xn is εn = ŷn − y(xn). The assumed ordering of the
truncation error coefficients and elementary differentials is that adopted by
Harris [13] in the generation of the equations of condition. The global error
can be estimated by solving a differential system associated with (1), two
forms of which have been considered previously [9]: these are

y′h(x) = fh[x,yh(x)] = f [x,yh(x)] + dh(x)

dh(x) = P ′(x)− f [x,P (x)], (3)

yh(x0) = y(x0) = P (x0)
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and

ε′h(x) = f̄ [x, εh(x)] = P ′(x)− f [x,P (x)− εh(x)], (4)

εh(x0) = εh0 = P (x0)− y(x0).

The solution of the system (3) is yh(x) = P (x) and so, assuming P is defined,
its numerical solution by the RKq from (2) yields {yhn} with known global
error εhn = yhn − yh(xn) which can be used to approximate εn. System (4),
which has solution εh(x) = P (x) − y(x), can be solved numerically using
any RK process, say one of order q̄, to produce εhn directly as an estimate
of εn. Practical testing [9] has shown the latter technique is preferable.

2 Discrete estimation

Asymptotically valid estimates of εn are obtained if En = εhn− εn = O(hr),
where r > q. The analysis in [3], based on the associated form (3), has shown
that the order of En is governed by that of

un =
∑
i=q+1

hi−1
n

ni∑
j=1

τ̂
(i)
j H

(i)
j [xn,y(xn)],

where H
(i)
j [xn,y(xn)] = F

(i)
hj [xn,y(xn)] − F

(i)
j [xn,y(xn)]. A similar analysis

[4] has shown that for the form (4) the order of En is dependent on that of

T n =
∑
i=q̄+1

hi−1
n

ni∑
j=1

τ̄
(i)
j F̄

(i)
j [xn, εh(xn)], (5)

where τ̄
(i)
j and F̄

(i)
j are the truncation coefficients and elementary differentials

relating to the RKq̄ process applied to the associated equation (4). Peterson
[14] has related the elementary differentials associated with (1), (3) and (4).

With either of the associated equations the choice of P (x) is crucial. The
following choices have been analysed: ([4], [9], [7])

(i) take P (x) to be the degree m piecewise polynomial interpolant of
(xi, ŷi) based on blocks of m steps;

(ii) as (i) but interpolating (xi,f [xi, ŷi]);

(iii) as above but using Hermite interpolants based on ŷ and f ;

(iv) use the RK triple (2) to form P (x) in a single step with the following
possibilities:
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(A) P (x) interpolates (xn+σj ,y
∗
n+σj

), j = 0, 1, . . . ,m;

(B) as (A) but using f [xn+σj ,y
∗
n+σj

] values;

(C) using some (not necessarily all) of the y∗n+σj
and f [xn+σj ,y

∗
n+σj

]
from (A) and (B).

A major advantage of case (iv) is that the estimation process can be
applied after each step of the numerical integration rather than following a
block of m steps. This case includes the situation

P (x) ≡ y∗n+σ,

which offers computational advantages [4] over the other modes and so the
remainder of this paper assumes that this is the case and thus the degree,
m, of P (x) is predetermined by the particular dense formula being used. In
most cases m = q∗ and usually [8] q∗ is either q or q − 1. In what follows
the term integrator is adopted for the RK triple defined by (2) and applied
to equation (1) and the term estimator for the RK process used with (4).

Consideration of T n from (5) shows that the order of En is dependent

on the τ̄
(i)
j and the F̄

(i)
j with the latter being dependent on the derivatives

of U(x) = P (x)− y(x) for which the following bounds hold [4]

‖U (k)(x)‖ ≤


Nkh

min[q,q∗+1,m+1], k = 0
Nkh

min[q,q∗,m]+1−k, 1 ≤ k ≤ m
Nk, k > m

, (6)

Examination of the F̄
(i)
j , j = 1, 2, . . . , ni, shows that for fixed i only F̄

(i)
1

contains the highest derivative U (i) which corresponds to the quadrature type

RK equations of condition. The remaining F̄
(i)
j contain U (i−1) and lower

derivatives. Table 1 gives the U derivative dependency for i = 2, 3, . . . , 10.
It will be useful to introduce the quantity S(i)

r defined as the set of RK

truncation error coefficients of order i corresponding to the F̄
(i)
j containing

the highest derivative U (i−r+1). Thus

S
(i)
1 = {τ̄ (i)

1 }, ∀ i,

S
(3)
2 = {τ̄ (3)

2 }, S
(4)
2 = {τ̄ (4)

3 }, S
(5)
2 = {τ̄ (5)

5 }, . . . ,

S
(4)
3 = {τ̄ (4)

2 , τ̄
(4)
4 }, S

(5)
3 = {τ̄ (5)

4 , τ̄
(5)
8 }, . . . ,

S
(5)
4 = {τ̄ (5)

j , j = 2, 3, 6, 7, 9}, . . . ,
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Table 1: Highest derivatives of U occurring in F̄
(i)
j .

i j Highest deriv. i j Highest deriv.
2 1 2 8 1 8
3 1 3 15 7

2 2 14, 53 6
4 1 4 12, 13, 51, 52, 89 5

3 3 9 1 9
2, 4 2 22 8

5 1 5 21, 98 7
5 4 19, 20, 96, 97, 191 6

4, 8 3 10 1 10
2, 3, 6, 7, 9 2 30 9

6 1 6 29, 177 8
7 5 27, 28, 175, 176, 402 7

6, 15 4
4, 5, 13, 14, 19 3

7 1 7
11 6

10, 29 5
8, 9, 27, 28, 42 4

It is instructive to set q̄ = 1 and to consider the contribution of truncation

coefficients to T n which can be seen by replacing F̄
(i)
j by the corresponding

highest derivative of U and introducing the S(i)
r . This gives

En ∼
∑
i=1

∑
k=1

hi+k−1U (k+1)S
(i+k)
i ,

which, using the appropriate order of U (k)(x) from (6), may be used to show

which S(i)
r , and hence which τ̄

(i)
j , affect the principal terms in En. Thus

‖En‖ ∼
∑
i=1

hiVi, (7)

where the Vi are dependent on q, q∗, m and the S(k)
r .

Zeroisation of the elements of the appropriate Vi will now lead to a suitable
estimator. So the estimation process where P (x) ≡ y∗n+σ will allow global
error estimation to be obtained at the end of every step of the integration
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process. Usually q∗ is either q − 1 or q and m is either q∗ or q∗ + 1. It is
found from (7) that

Vi = 0, i = 1, 2, . . . , q∗ − 1,

Vq∗ = Vq∗{S(k)
1 = τ̄

(k)
1 , k = 1, 2, . . . , q∗ + 1}, (8)

Vq∗+1 = Vq∗+1{S(k)
1 , k = 1, 2, . . . , q∗ + 2; S

(k)
2 , k = 3, 4, . . . , q∗ + 2},

...

and so it is clearly preferable where possible to have q∗ = q. Thus from (8),

if q∗ = q and τ̄
(k)
1 = 0 where

τ̄
(k)
1 =

1

(k − 1)!

s̄∑
i=1

b̄ic̄
k−1
i − 1

k!
, k = 1, 2, . . . , q + 1, (9)

then ‖En‖ will be at least O(hq+1). Using (8) again it can be seen that
2-term asymptotic estimation is possible if

τ̄
(k)
1 = 0, k = 1, 2, . . . , q + 2 and

s̄∑
i=2

b̄iQ̄i,k = 0, k = 1, 2, . . . , q. (10)

The Q̄i,k are functions of the RK parameters āi,j and c̄i [15]. If q∗ = q − 1
then additional truncation coefficients need to be zero.

3 Continuous estimation

Applying the RK process of order q̄ with s̄ stages together with an associated
dense process of order q̄∗ and s̄∗ stages to system (4) gives

εhn+1 = εhn + hn
s̄∑
i=1

b̄if̄ i and ε∗hn+σ = εhn + σhn
s̄∗∑
i=1

b̄∗i (σ)f̄ i (11)

where

f̄ i = f̄ [xn + c̄ihn, εhn + hn
i−1∑
j=1

āijf̄ j], i = 1, 2, . . . , s̄∗. (12)

It is assumed that q̄∗ = q̄ − 1 or q̄, the FSAL evaluation is utilised so that
C1 continuity is obtained and s̄∗ ≥ s̄ + 1. Equation (11) yields a numerical
solution ε∗hn+σ approximating εh(xn+σ) and using the true solution of (4)
with P (x) ≡ y∗n+σ, this leads to

εh(xn+σ) = y∗n+σ − y(xn+σ).
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Similar to the analysis of ([4], [3]) the following result for E∗n+σ is easily
deduced:

E∗n+σ = ε∗hn+σ − εh(xn+σ) ∼ O(‖En‖) + T ∗n,

where

T ∗n = σhn
∑

i=q̄∗+1

(σhn)i−1
ni∑
j=1

τ̄ ∗
(i)

j (σ)F̄
(i)
j [xn, εh(xn)]. (13)

Since the dense output solutions y∗n+σ and ε∗hn+σ are not propagated beyond
step n the expression (13) is effectively a local contribution to E∗n+σ. The
similarity between (13) and (5) allows a determination of which truncation

error coefficients τ̄ ∗
(i)

j (σ), relating to the RKq̄∗, affect the leading few terms
of T ∗n. Taking q̄∗ = 1 these can be determined in a similar manner to those
in the discrete case. From an asymptotic point of view it is required that
E∗n+σ should be at least O(hq

∗+1
n ).

4 Global extrapolation and global embedding

Having obtained estimates for the discrete and continuous global errors the
extrapolated (higher order) values are ỹn = ŷn−εhn and ỹ∗n+σ = y∗n+σ−ε∗hn+σ

and consideration has been given to the discrete value in [5]. The following
analysis considers the continuous situation. With x ε [xn, xn+1] it is found
that

P (x) = P (xn + σh) = y∗n+σ and P ′(xn + σh) =
s∗∑
i=1

d∗i (σ)f i

where

b∗i (σ) =
m−1∑
j=0

Bi,jσ
j and d∗i (σ) = b∗i (σ) + σ

d

dσ
b∗i (σ) =

m−1∑
j=0

Bi,j(1 + j)σj.

Consideration of the expression for f̄ i from (12) shows that

f̄ 1 = f 1 − f(xn, ỹn) = f 1 − f s∗+1

and

f̄k =
s∗∑
i=1

d∗i (c̄k)f i − f s∗+k, k = 1, 2, . . . , s̄∗,

where

f s∗+k = f [xn + c̄khn, ỹn + hn
s∗+k−1∑
j=1

as∗+k,jf j], k = 1, 2, . . . , s̄∗,

7



and

as∗+k,j =

 c̄kb
∗
j(c̄k)−

k−1∑
i=1

āk,id
∗
j(c̄i), j = 1, 2, . . . , s∗, k = 1, 2, . . . , s̄∗

āk,j−s∗ , j = s∗ + 1, s∗ + 2, . . . , s∗ + k − 1, k = 1, 2, . . . , s̄∗

(14)
Using equations (2), (11) and (12) it is found that

ỹ∗n+σ = ỹn + σhn{
s∗∑
i=1

b∗i (σ)f i −
s̄∗∑
i=1

b̄∗i (σ)f̄ i}

which using the expressions for f̄ i gives

ỹ∗n+σ = ỹn + σhn
s̄∗∑
i=1

b̄∗i (σ)f s∗+i − σhn
s∗∑
i=1

Y ∗i (σ)f i

where

Y ∗i =
s̄∗∑
k=1

b̄∗k(σ)d∗i (c̄k)− b∗i (σ), i = 1, 2, . . . , s∗

and substitution for d∗i (c̄k) gives

Y ∗i =
m−1∑
j=0

(1 + j)Bi,j{
s̄∗∑
k=1

b̄∗k(σ)c̄ j
k − σj/(j + 1)} =

m−1∑
j=0

(1 + j)Bi,jσ
jj! τ̄ ∗

(j+1)

1 (σ)

where τ̄ ∗
(j+1)

1 (σ), j = 0, 1, . . . ,m−1 are the quadrature truncation coefficients
associated with the continuous process of order q̄∗ which are required zero
for valid asymptotic estimation. Thus Y ∗i = 0, i = 1, 2, . . . , s∗ leading to

ỹ∗n+σ = ỹn + σhn
s̄∗∑
i=1

b̄∗i (σ)f s∗+i and ỹn+1 = ỹn + hn
s̄∑
i=1

b̄if s∗+i (15)

where ỹ0 = y(x0) and the latter result from (15) has been obtained by
putting σ = 1 giving the result for the discrete extrapolated value from [5].
This may be written

ỹn+1 = ỹn + hn
s̃∑
i=1

b̃if i , ỹ∗n+σ = ỹn + σhn
s̃∗∑
i=1

b̃∗i (σ)f i and

f i =


f(xn + cihn, ŷn + hn

i−1∑
j=1

ai,jf j), i = 1, 2, . . . , s∗,

f(xn + cihn, ỹn + hn
i−1∑
j=1

ai,jf j), i = s∗ + 1, s∗ + 2, . . . , s̃∗
(16)
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where

s̃ = s∗ + s̄, s̃∗ = s∗ + s̄∗, cs∗+i = c̄i, i = 1, 2, . . . , s̄∗,

b̃i = b̃∗i = 0, i = 1, 2, . . . , s∗, b̃i = b̄i−s∗ , b̃∗i = b̄∗i−s∗ , i = s∗+1, s∗+2, . . . , s̃∗.

Thus the extrapolation process (16) is rather like a standard RK formula.
The difference being that the function evaluations with extrapolation utilise
both ŷn and ỹn. In what follows the term Extrapolator will be adopted for
this process. After using the integrator at each step to obtain values ŷn and
y∗n+σ by solving the system (1) there are two approaches that can be used to
obtain the required global error estimates. First the estimator can be applied
to solve the error correction system (4) giving global error estimates εhn and
ε∗hn+σ. Alternatively the extrapolator can be used to give error estimates
ŷn − ỹn and y∗n+σ − ỹ∗n+σ. Clearly this latter approach is to be preferred
since it significantly reduces the complexity of the overall estimation process
by eliminating the need for the second system (4) to be solved numerically.
Global Embedding is the term that has been adopted for this approach [5] and
Fortran 90 code associated with the estimation procedure can be found in [2].
Since the processes (2) and (16) utilise common function evaluations the error
estimation procedure is extremely cost effective. Assuming no step rejections
the whole procedure, after the first step, costs s̃∗−2 function evaluations per
step since there are effectively two applications of the FSAL strategy. This
compares very favourably against Richardson extrapolation which costs 3S
function evaluations per step where S is the cost of a basic step integration.
Richardson extrapolation has the advantage of estimating the global error
in the more accurate integration but the global extrapolation process can
obtain far better estimates by careful choice of the estimator/extrapolator as
will be demonstrated in §5.

5 Global error estimation processes

This section is concerned with the construction of RK estimation processes
with consideration being given to obtaining both discrete and continuous
estimates.

5.1 Integrator of order 3

Any third order RK triple in the form of (2) can be used as the integrator.
The RKT3(2)3 of [15] (see Table 2) where q = 3, q∗ = 3, and s = s∗ = 4 is
one such possibility.
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Table 2: Integrator RKT3(2)3

ci aij b̂i bi b∗i

0 2
9

7
36

5σ2−12σ+9
9

1
2

1
2

1
3

19
36

σ(3−2σ)
3

3
4

0 3
4

4
9

1
6

4σ(3−2σ)
9

1 2
9

1
3

4
9

0 1
9

σ(σ − 1)

Since the RKT3(2)3 has q∗ = q then from (9) τ̄
(k)
1 = 0, k = 1, 2, . . . , 4,

will yield 1-term discrete estimation. Assuming distinct c̄i, i = 1, 2, 3, the
τ̄

(k)
1 can be zeroed with s̄ = 3 and it requires c̄3 = (4c̄2 − 3)/(2(3c̄2 − 2)) and

leaves ā3,2 and c̄2 as degrees of freedom. For the continuous estimator s̄∗ is
taken as 4 where stage 4 is the FSAL stage which implies

c̄4 = 1, b̄4 = 0 and ā4,j = b̄j, j = 1, 2, 3.

This permits the parameters b̄∗i (σ), i = 1, 2, . . . , 4, to be found by zeroisation

of the τ̄ ∗
(k)

1 (σ), k = 1, 2, . . . , 4. The coefficients of the extrapolator can now
be found from (14). It is noticed that if all the function evaluations were to
be evaluated using the same value of y, say Y where Y 0 = y(x0), then the
extrapolator coefficients give rise to an associated standard fourth order RK
process. This would mean that 1-term global error estimates, ŷn − Y n, in
the RKT3(2)3 integrator could be obtained using this fourth order associated
process but it would be at a significant cost since the process would not now
be using common function evaluations. A couple of obvious possibilities arise
as to how the two degrees of freedom should be chosen. First they could be
chosen to obtain a small contribution from those truncation error terms,
τ̄

(i)
j , which would generally have to be made zero if 2-term estimation was

required. This, however, raises a problem in that these consist of terms of
differing orders and it is not clear how any weighting associated with the
terms should be applied. For example should the terms with small i values
be given more weight? A second possibility is to consider the associated RK
process and choose the free parameters to give a small norm of the principal
truncation error terms, τ̃

(5)
j , j = 1, 2, . . . , 9. It is easily found that the τ̄

(i)
j

and the τ̃
(5)
j are related. For example

τ̃
(5)
1 = τ̄

(5)
1 and τ̃

(5)
9 =

τ̄
(3)
2

3
− τ̄ (4)

3 + τ̄
(5)
5 .
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Practical investigations show that the second possibility is preferable.
This leads to the choice ā3,2 = 7/8 and c̄2 = 1/3 and results in the estimator
EST1 and extrapolator XTR1 (see Tables 3 and 4). Notice how coefficients
from the integrator and estimator appear in the extrapolator tableau. The
estimation process using (2) and (16) effectively uses 6 function evaluations
per step, assuming no rejected steps, where it can be seen that the fourth
evaluation at step n will be the same as the first evaluation at step n+1 and
that the last evaluation at step n will be the same as the fifth evaluation at
step n+1. The coefficients of the integrator-extrapolator process can also be
found in the file rkcoeffs.pdf at https://www.peteprince.co.uk/.

Table 3: Estimator EST1

c̄i āij b̄i b̄∗i

0 1
10

10−26σ+26σ2−9σ3

10

1
3

1
3

1
2

σ(9σ2−22σ+15)
4

5
6
− 1

24
7
8

2
5

−2σ(9σ2−16σ+6)
5

1 1
10

1
2

2
5

0 σ(σ−1)(9σ−5)
4

Table 4: Extrapolator XTR1 based upon the integrator RKT3(2)3

ci aij b̃i b̃∗i

0 0 0

1
2

1
2

0 0

3
4

0 3
4

0 0

1 2
9

1
3

4
9

0 0

0 0 0 0 0 1
10

10−26σ+26σ2−9σ3

10

1
3
− 31

243
7
81

28
243

− 2
27

1
3

1
2

σ(9σ2−22σ+15)
4

5
6

11
972

− 13
162
− 26

243
19
108

− 1
24

7
8

2
5

−2σ(9σ2−16σ+6)
5

1 0 0 0 0 1
10

1
2

2
5

0 σ(σ−1)(9σ−5)
4
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Higher order discrete estimation can be obtained using (8) and (10) to
zeroise more of the appropriate discrete truncation error terms. This has
been done with both s̄ = 4 and s̄ = 5 to give 2-term and 3-term discrete
estimators respectively. The zeroisation of truncation coefficients is generally
more costly in the continuous case and for higher order processes this may
have a significant affect on the size of s̄∗/s̃∗. These estimators, EST2 and
EST3, and corresponding extrapolators, XTR2 and XTR3, can be found in
Tables 5, 6, 7 and 8 respectively and the extrapolator coefficients can be
found in the file rkcoeffs.pdf. The overall estimation processes using XTR2
and XTR3 use effectively 7 and 8 f evaluations respectively per step.

Table 5: Estimator EST2

c̄i āij b̄i b̄∗i

0 5
48

48−126σ+128σ2−45σ3

48

1
3

1
3

27
56

27σ(5σ2−12σ+8)
56

4
5
−19

25
39
25

125
336

−125σ(9σ2−16σ+6)
336

1 38
7
−87

14
25
14

1
24

−σ(2−3σ)(6−5σ)
24

1 5
48

27
56

125
336

1
24

0 σ(σ−1)(5σ−3)
2

Table 6: Estimator EST3

c̄i āij b̄i b̄∗i

0 53
702

702−2685σ+4436σ2−3360σ3+960σ4

702

1
4

1
4

44
117

−2σ(240σ3−765σ2+854σ−351)
117

13
20
−4759183

6982500
2324452
1745625

100
273

50σ(48σ3−129σ2+110σ−27)
273

9
10

4500387
1163750

−10646649
2327500

45
28

50
351

−50σ(96σ3−228σ2+170σ−39)
351

1 −7313669
907725

3399923
302575

−33
13

14
39

5
126
−σ(4496σ3−10865σ2+8292σ−1948)

630

1 53
702

44
117

100
273

50
351

5
126

0 σ(σ−1)(1328σ2−1767σ+529)
90
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Table 7: Extrapolator XTR2 based upon the integrator RKT3(2)3

ci aij b̃i b̃∗i

0 0 0

1
2

1
2

0 0

3
4

0 3
4

0 0

1 2
9

1
3

4
9

0 0

0 0 0 0 0 5
48

48−126σ+128σ2−45σ3

48

1
3
− 31

243
7
81

28
243

− 2
27

1
3

27
56

27σ(5σ2−12σ+8)
56

4
5

119
225

−148
375
− 592

1125
49
125

−19
25

39
25

125
336

−125σ(9σ2−16σ+6)
336

1 −409
126

53
21

212
63

−37
14

38
7
−87

14
25
14

1
24

−σ(3σ−2)(5σ−6)
24

1 0 0 0 0 5
48

27
56

125
336

1
24

0 σ(σ−1)(5σ−3)
2

Table 8: Extrapolator XTR3 based upon the integrator RKT3(2)3

ci aij b̃i b̃∗i
0 0 0

1
2

1
2

0 0

3
4

0 3
4

0 0

1 2
9

1
3

4
9

0 0

0 0 0 0 0 53
702

702−2685σ+4436σ2−3360σ3+960σ4

702

1
4

− 43
576

5
96

5
72

− 3
64

1
4

44
117

− 2σ(240σ3−765σ2+854σ−351)
117

13
20

113369191
335160000

− 14519609
55860000

− 14519609
41895000

5993689
22344000

− 4759183
6982500

2324452
1745625

100
273

50σ(48σ3−129σ2+110σ−27)
273

9
10

− 927519
581875

3044619
2327500

1014873
581875

− 678807
465500

4500387
1163750

− 10646649
2327500

45
28

50
351

− 50σ(96σ3−228σ2+170σ−39)
351

1 692786
209475

− 194813
69825

− 779252
209475

14909
4655

− 7313669
907725

3399923
302575

− 33
13

14
39

5
126

−σ(4496σ3−10865σ2+8292σ−1948)
630

1 0 0 0 0 53
702

44
117

100
273

50
351

5
126

0
σ(σ−1)(1328σ2−1767σ+529)

90

One way to compare the efficiency of the three extrapolators associated
with the RKT3(2)3 is to compare cost (in terms of function evaluations)
against global accuracy. The RKT3(2)3 provides third order estimates, ŷn
and y∗n+σ, of y(xn) and y(xn+σ) at x = xn and x = xn+σ respectively where
the step sequence is determined by local error estimates. Each extrapolator,
XTR1, XTR2 and XTR3, can then be used to obtain the global errors, ε̃n and

13



ε̃∗n+σ, in the ỹn and ỹ∗n+σ approximations. For a given initial value problem,
range of integration and a sequence of tolerances it is possible to plot log10M
against cost where M is the maximum absolute value of the global error (εn
for the integrator or ε̃n for the extrapolators) over all steps and equation
components. To test continuous estimation the plots of log10M

∗ against cost
are used where M∗ is the maximum absolute value of the global error at the
mid-point of each step (ε∗n+1/2 or ε̃∗n+1/2). This has been done using a sample
of the problems from the DETEST suite [12] and from those used by Hairer et
al. [11]. On the vast majority of the test problems all three extrapolators gave
good estimates for both the discrete and continuous global errors over the
range of integration. Each problem considered the various log10M or log10M

∗

values generated using a range of local error tolerances from 10−3 down to
10−5 to control the local error estimates from the RKT3(2)3 integrator. Since
the estimation procedure depends on asymptotic applicability any problems
tended to occur at the more lax tolerances where in some cases the results for
XTR1 were rather poor. Unless very accurate estimation is required XTR2 is
recommended. To illustrate the situation two example plots are considered.
Figure 1 shows the plots of the various log10M values for the integrator,
RKT3(2)3, and the three extrapolators, XTR1, XTR2 and XTR3, against
function evaluations for DETEST problem D3 and Figure 2 shows the plots
of the various log10M

∗ values for the AREN problem of [11].

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  500  1000  1500  2000  2500  3000  3500  4000

RKT3(2)3

XTR1

XTR2

XTR3

Figure 1: DETEST Problem D3: log10M against Function Evaluations.

5.2 Higher order integrators

The global extrapolation process has been applied to integrators of higher
order. For example, the fourth order integrator, RKT4(3)4 of [15], where
q = q∗ = 4, s = 5 and s∗ = 6 has been utilised to obtain extrapolators,
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Figure 2: AREN Problem: log10M
∗ against Function Evaluations.

XTR4, XTR5 and XTR6 following a similar analysis to that in §5.1 (see file
rkcoeffs.pdf). These respectively yield 1-term, 2-term and 3-term discrete
error estimation and respectively have (s̃, s̃∗) = (10,11), (11,12) and (12,14).
Alternatively EST1 and EST2 could be used to obtain extrapolators based
on the RKT4(3)4 which respectively yield 1-term and 2-term discrete global
error estimation.

Among the possible integrators of order 5 are the RKT5(4)5 of [15] where
q = q∗ = 5, s = s∗ = 8 which effectively uses 7 function evaluations per step
and the RK5(4)7FM of [6] (frequently referred to as DOPRI5) which has
dense processes of orders 5 and 4 ([1], [8]) where with the fifth order dense
formula this process has s = 7 and s∗ = 9 (effectively using 8 evaluations
per step) and with the fourth order dense formula has s = s∗ = 7 (effectively
using 6 evaluations per step). Since practical testing [15] has shown that the
RK5(4)7FM is generally to be preferred to the RKT5(4)5 based on global
error versus cost considerations the RK5(4)7FM will be considered as the
integrator and consideration will be given to both cases where q∗ = 5 and
q∗ = 4. With q∗ = 5 the required continuous global error estimates will need
to be at least O(h6) whereas for q∗ = 4 they will need to be at least O(h5).
It is important to note that the value of q∗ will govern the values of s̄, s̄∗

and the quality of estimation. With q∗ = 5 the extrapolator XTR7 has been
produced where s̄ = 6, s̄∗ = 8 which implies that s̃ = 15 and s̃∗ = 17 whereas
with q∗ = 4 the extrapolator XTR8 has been produced where s̄ = 7, s̄∗ = 9
which implies that s̃ = 14 and s̃∗ = 16. For both XTR7 and XTR8 the use of
(2) and (16) will yield 3-term discrete estimation. The coefficients for both
XTR7 and XTR8 can be found in the file rkcoeffs.pdf. Over a wide range
of problems and tolerances the process invoving XTR8 is significantly better

15



than that utilising XTR7 for discrete estimation. For continuous estimation
the difference between the two is not as great as in the discrete case. To
illustrate the estimation process three example plots are considered where
local error tolerances from 10−3 down to 10−9 were used. Figure 3 shows
the plots of the various log10M values for the integrator, RK5(4)7FM, and
the two extrapolators, XTR7 and XTR8, against function evaluations for
the AREN problem of [11]. Figure 4 shows the plots of the various log10M

∗

values for the BRUS problem of [11] and Figure 5 shows the plots of the
various log10M values for the DETEST problem D3.
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Figure 3: AREN Problem: log10M against Function Evaluations.
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Figure 4: BRUS Problem: log10M against Function Evaluations.

The RK triple RKT8(6)7 of [15] where q = 8, p = 6, q∗ = 7, s = 13
and s∗ = 14 has been considered as the integrator. With s̄ = 6 and s̄∗ = 9
an estimator and an extrapolator have been developed. The extrapolator,
XTR9 (see file rkcoeffs.pdf), has s̃ = 20 and s̃∗ = 23. This will yield 2-term

16



-12

-10

-8

-6

-4

-2

 0

 2

 0  1000  2000  3000  4000  5000  6000

RK5(4)7FM(D5)
XTR7

RK5(4)7FM(D4)
XTR8

Figure 5: DETEST Problem D3: log10M
∗ against Function Evaluations.

discrete estimation. Notice how, for large values of q, the values of s̄∗ and s̃∗

become significantly greater than s̄ and s̃. Once again the estimation process
is illustrated by three example plots (Figures 6, 7 and 8) where local error
tolerances from 10−3 down to 10−12 were used.

6 Conclusions

The results of this work suggest that global extrapolation methods based
on Runge-Kutta triples are a cost effective way of global error estimation
in both the discrete and continuous cases. As might be expected the RK
triple RK5(4)7FM (with fourth order dense) together with the extrapolator
XTR8 seems to give best estimation when the local error tolerances are lax
to medium whereas for stringent tolerances the RK triple RKT8(6)7 together
with the extrapolator XTR9 is preferred.
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Figure 6: AREN Problem: log10M against Function Evaluations.
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Figure 7: BRUS Problem: log10M against Function Evaluations.
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Figure 8: DETEST Problem D3: log10M
∗ against Function Evaluations.
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